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ABSTRACT

The mutual information between the radiance of an incoherently
radiating object plane and the field at the aperture of an observing
éystem is calculated on a classical basis. A formula of the Shannon
type is obtained when the time-bandwidth product of the object light
is large, the average radiance from the object plane is small enough
to permit the threshold approximation, and the radiance of the object
plane is modeled as-a spatial gaussian process. It includes the
dependence\onftﬁévbandwidth of the object light and the effective
temperafuté %f'tﬁe background, assumed spatially aﬁa‘temporally
white. A set of sufficient statistics for the aperture field, based
on Fourier sampling of the object plane, is introduced, and its
bearing on the resolution of fine details of the object is brought

out.




The information content of optical images has mostly been calculated on
the assumption that both the desired image and the corrupting noise can be
described as independent and additive gaussian random processes. - The result
is a formula of the type introduced by Shannon for the capacity of a band-limited
channel with additive gaussian noise.ll It has been generally recognized that
the assumption of additivity and gaussian statistics is open to objection when
applied to an incoherently radiating object and to an image treated as an
illuminance or as the density of developed photographic film.8 Only treatments
based on photon statistics,lz“14 and those limited to coherent light, have
avoided this assumption.

Under a classical theory of light the information in an image can be no
greater than that present in the values of the electromagnetic field at the
aperture of the image-forming optical instrument during the interval of observa-
tion. This aperture field has two additive components, the light from the
object plane and the random background light. The field created by an incoherently
radiating object plane cannot, however, be precisely controlled by a transmitter
of information. Only through the radiance of the object plane can information
be imparted to the incoherent light emitted. The object field itself is a
spatio-temporal gaussian random process whose mutual coherence function depends
on the radiance of the object plane. Although the background light can be
treated as gaussian noise, it does not add directly to the information-bearing
quantities for the object light, which are the values of its mutual coherence

function and not the object field itself. The model of an additive gaussian

channel cannot, therefore, be simply applied. Since only the object radiance




can be controlled, the mutual information of significance is not that between the
field at the object plane and the field wa(g, t) at the aperture of the observing
system. Rather, it is that between the radiance B(u) of the object plane and
the field wa(g, t); we denote it by I(B; wa).

In this paper we shall show how to calculate the mutual information
I(B; wa). At the end a formula of the Shannon type will be obtained, but the
advantage of this treatment is that the approximations necessary are clearly
brought out. There are three principal assumptions required. (1) The time T
during which the field is observed is much greater than the reciprocal of the
bandwidth W of the object light; WT >> 1. (2) The average total energy E received
from the object plane during the observation must be much less than NMWT, where N
is the spectral density of the background light and M is the number of spatial de-
grees of freedom in the aperture field. (3) The object radiance B(g) is treated as
a spatial gaussian random process, an assumption requiring low contrast in the

object plane in order to avoid negative values of the radiance.

The second assumption, that E/NMWT << 1, underlies the application of the
threshold approximation to determining the detectability of incoherently radiating
objects,15 as well as to calculating their information transfer. The number M is
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given by
M= A AO/_(AR)?-,

where A is the area of the aperture, A0 the area of the object plane, A the dominant
wavelength of the object light, assumed quasimonochromatic, and R the distance of
the object. 1In terms of the average radiance B of the object plane,

E=3BAA_ T/(41R?),
and the critical ratio

E/NMWT = (B/NW) (A2/4w) << 1

is independent of the observation time, the sizes of object plane and aperture,




and the distance between them. The ratio B/W is the average radiance spectral
density of the object light (watts/cm2 Hz), and N = K7, where K is Boltzmann's

constant and ¢ is the effective absolute temperature of the background light.

The mutual information I(B; wa) refers to a class or ensemble of patterns
B(u) of radiance in the object plane, not to a single pattern or scene. Although
at the end of our analysis this ensemble will be taken as made up of gaussian
spatial random processes, it is convenient to think of it during the analysis as
a discrete set of patterns, each of which represents a symbol of some alphabet
into which messages have been coded. The optical instrument is then treated as
a device that must decide, on the basis of its aperture field wa(g, t) during
an observation interval (0, T), which of the ensemble of patterns B(u) is actually
present. It bases this decision én a set of likelihood ratios,17 each corres-
ponding to one of the possible radiance patterns B(u).

Under assumptions (1) and (2), these likelihood ratios can be expressed in
terms of a set of sufficient statistics that depend quadratically on the aperture
field and contain all the information in it relevant to deciding, in the presence
of white gaussian background light, which among the ensemble of radiance patterns
B(u) currently exists over the object plane. These statistics are, in this
approximation, independent gaussian random variables. The mutual information
I(B; wa) can be expreséed in terms of them, and when assumption (3) holds, the
Shannon~type formula for I(B; wa) is easily obtained.

In this way, the transmission of information from object plane to
observing instrument can be regarded as taking place via a large number--roughly
WI--of independent, additive gaussian channels. The channels correspond to what
has been called Fourier sampling of the object plane,l8 and channels associated

with the finer details in the object possessthe smaller effective signal-to-noise




ratios. For details smaller then the conventional resolution limit AR/D--
R = distance of object, D = diameter of aperture-—, the signal-to-noise ratios
are vanishingly small, and information associated with them is lost. This
aspect of the analysis bears out previoué conclusions about the resolvability

of fine details in the object plane.18



I. The Object Plane as a Transmitter of Information

As mutual information is most directly interpretable in terms of communi-
cation, it is useful to consider the object plane O as part of a communication
system transmitting messages to a distant receiver, as shown in Fig. 1. Because
the object piane radiates incoherently, the transmitter can control only its
radiance, not the actual values of the electromagnetic field that it radiates.
In sending messages, the transmitter selects radiance patterns B(u) from a
predetermined set, each pattern corresponding to a symbol of some alphabet into
which messages have been coded. The patterns are changed every T seconds as
new message symbols appear.

The receiver is an optical instrument admitting the light from O through
an aperture A. It knows the patterns B(u) and the symbols for which they stand.
It must be able to decide which patterns B(u) have been exposed at the object
plane during some sequence of intervals, each of duration T. It issues a stream
of symbols identifying the patterns it believes were transmitted, and a sub-
sequent decoder interprets them in terms of messages that might have been sent,
occasionally making errors because the receiver decided incorrectly about some
of the patterns. The receiver bases its decisions on the values of the field
wa(z, t) at its apertﬂre, processing it--as by lenses, stops, and a photosensitive
surface-~in such a way as to make the decisions with minimum probability of
error.17 The mutual information of significance is that between the ensemble of
radiance patterns B(y) and the field values wa(z, t) at the aperture. In calcu-
lating it we shall assume for simplicity a classical and scalar theory of the

electromagnetic field.




The field wso(g, t) immediately in front of the object plane 0 is a
circular-complex gaussian spatio-temporal stochastic process,19 quasimonochromatic
and having a central frequency Q/2m = c¢/X; ¢ is the velocity of light and X the
dominant wavelength. The mean values of the field are zero; its statistical

. . . . , . . 15,20
distributions are determined entirely by its mutual coherence function 2

1 %
—2" E[d’so(l}l, tl) q)so<l}23 tz)] =

mk™? B(u,) 8(w; - u,) x(t; - t,) exp[- ia(t; - t,)], (1.1)

where B(u) is the radiance of the object plane and x(1) is the temporal coherence
function, normalized so that x(0) = 1. All patterns have the same color; the
temporal coherence function x(t1) is invariable. The two-dimensional delta-
function §(u, - u,) indicates the absence of correlation between field values
at points separated by distances much smaller than the extent of significanf
details in the patterns B(u), in accordance with the incoherent nature of the
emitted light.

1
The bandwidth W of the object light is conveniently defined by >

[+¢] 2 o0
X (w) dw/2m /f [X(w)]1? dw/2w
]x(O)lé// lx () |2 dr, (1.2)

X(w) = x (1) e luT dt (1.3)

=
[

where

is its spectral density, with angular frequencies w referred to Q = 2mc/A. This
bandwidth W for natural sources of light is so great that any effective means

of altering the radiance B(u) requires a time much longer than 1/W, and we can



assume that each pattern is exposed for a time T >> 1/W. The basic observation
interval for each transmitted symbol can be taken as (0, T), and the mutual

information will be referred to this interval of T seconds' duration.




IT. The Representation of the Aperture Field

The field wa(g, t) at the aperture A consists of two independent parts,
the field ws(g, t) of the light from the object plane, and the background field
P (r, t):

v (r, ©) =y (z, t) +y (x, t). (2.1)

. , 19
Both are circular-complex gaussian random processes. The mutual coherence

function of the éperture field has two corresponding terms,
L ElY (x5 t)) ¥ %, £)] = @ (r)» 1) x(t, - £) exp[ - i2(t; - £,)]
7 2LV s 4y v s by Psiiys L7 XUty 2 P 1 2

+ N 6(r; - r,) 8(r; - t,), (2.2)

the former referring to the object light, or signal, the latter to the back-
ground light, or noise.
The spatial coherence function @S(gl, gz) of the light from the object

plane depends on the concurrent radiance distribution B(u),

9y 1) = m? [ 8(ry, w) $¥*(x,, W B d%, (2.3)
0]

where S(r, u) is the point-spread function for light propagating from object to
aperture.15 We suppose these separated by such a long distance R that the rays
from the object can be treated as paraxial, and the point-spread function is to
good approximation

S(r, u) =(ik/2mR) exp[ikR + ik|r - u|?/2R]. (2.4)

Then the spatial coherence function of the object light is

¢g(rys 1,) = (4nR?)7L explik(r)? - r,?)/2R] B(x, - 1,), (2.5)



where

B(x) = | B(u) exp(- ik r + u/R) d*u (2.6)
0

is the Fourier transform of the object radiance B(u). The total energy E

received from the object during a typical observation interval (0, T) is

E=T ws(g, r) dzg = B(0) AT/47R2, (2.7)
where A

B(0) = B(u) d%y (2.8)
0

is the integrated radiance of the object plane.

The second term in Eq. (2.2) is the mutual coherence function of the back-
ground light, which has a distribution in frequency and angle much broader than
that of the object light and is taken as spatially and temporally white. Its
spectral density N is in our present units equal to K7°.

In order to deal with the probability density functions of the aperture
field wa(g, t), we must express it in. terms of a countable set of random variables.
To this end we expand the field in a series of functions orthonormal over the
aperture A and over the observation interval (0, T). Since all the patterns have
the same temporal cohe?ence function x(t), it is convenient to write wa(g, t)
in terms of the eigenfunctions ym(t) of the integral equation

T
g Ym(t) = 771 x(t = s) ym(s) ds, (2.9)
0

and we write the aperture field in the form

v (x, £) = ZZ bom £5(0) Y (0, (2.10)
P m

10



where fp(g) form an arbitrary complete set of functions orthonormal over the
aperture A, The field coefficients wpm will then be statistically independent
for different values of m.21

Because we assume that WT >>1, the eigenvalues 8, are given approximately

g, = ™! X(2m/T), m = ...-1, 0, 1, 2,... (2.11)

in terms of the spectral density X(w) of the object light. They sum to 1,
E (8 = 1 (2.12)

and by Eqs. (1.2) and (2.9) and the orthonormality of the eigenfunctions Ym(t),

Z g~ = 1/WI. (2.13)

m
There are roughly WT significant temporal modes in the expansion of wa(g, t)
as in Eq. (2.10).

The coefficients wpm for each temporal mode labeled by m are conveniently
listed as a column vector %m’ whose hermitian conjugate row vector Tm+ lists
their complex conjugates wp:. The wpm are also circular-complex gaussian
random variableslg; in terms of the aperture field they are given by

*
Vom = | £,5@ vy (0 ¥ (x, ©) d?r dt. (2.14)
A

By using Eqs. (2.2) and (2.9) it can be shown that their covariances are

1 %
= E = (T +N6 )68, 2.
> ~(¢pm an ) ( 8y Ppq pq) om (2.15)

where Gnm is the Kronecker delta symbol and

11
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is an element of a covariance matrix g depending on the radiance B(u) of the
object plane through Eqs. (2.5) and (2.6).

The coefficients wpm contain all the information present in the aperture
field wa(f, t) during the basic interval (0, T). The joint probability density
function (p. d. f£.) of n of these coefficients, conditional on the actual
radiance pattern concurrently exposed at the aperture plane, has the complex

19

gaussian form

py|B) = 2m™ n det(T g ¢ + N 1)-1

m

x expl- %‘Tm+(T 8, @ + N ;)‘1 ?m]’ (2.17)

where I is the identity matrix and det stands for the determinant. Later it

will be possible to increase n beyond all bounds.

12



III. The Likelihood Ratios and Their Decomposition

If the receiver is to decide with minimum probability of error which
pattern B(u) is being exposed at the object plane, it must determine the
posterior probability of each pattern, given the actual field wa(g, t) observed
during the interval (0, T), and it must select the pattern and its associated
message symbol having the greatest posterior probability.17 The posterior
probability of a given radiance pattern B(u) is proportional to the conditional
p. d. f. p(Q|B) and to the prior probability of the pattern. Equivalently, it

is proportional to the likelihood ratio

A@[B) = p(y|B)/p () (3.1)

obtained by dividing p(w]B) by the joint p. d. £. po(@) of the coefficients’
wpm when no light arrives from the object plane and background light alone is
present at the aperture. This p. d. f. is obtained by setting Q= 0 in Eq.
(2.17),
p () = (2m ™" I | (det N )7 expl- 2y TN 1y 1. (3.2)
0"l ~ 2 m ~ m

m

The likelihood ratio can then be written as
-Z
A@[B) = e (3.3)

where the log-likelihood ratio Z is given by

_iz: trg-1 7 -1
Z=3 Y (N5 I - (Teg, ¢+ N D™ Y
m

- E gn det(I+ N1 Tg @)=

m

13




1. + - -
bwe) e e Genlrg 7ty
m
- E Tr (I + N1 T g o); (3.4)
m

we have used the rule22 that for any positive definite matrix M, 2n det M=
Tr (4n y), Tr standing for the trace of a matrix. At this point the total
number n of coefficients wpm included can be made infinite, so that all the
information in the aperture field is taken into account. The log-likelihood
ratio Z remains finite in this passage to the limit n + o,

The receiver can determine by operations on its aperture field wa(g, t)
the statistic 2 associatedAwith each pattern B(g) in the ensemble, and it can
use the Z's to calculate the posterior probability of each pattern. The Z's,
therefore, contain all the information in the aperture field relevant to the
receptive function of the optical instrument as part of the communication
system. We now wish to express each Z as a weighted sum of independent random
variables that do not depend on the patterns B(g). This will require the
assumption that the average energy E received from each pattern during the interval
(0, T) is much less than NMWT.

Each radiance pattern B(u) is expanded in a common series of ortho-

normal functions ﬁ7j(g),

B(u) =Z b, 63,(9). (3.5)

3
The patterns are now distinguished by their sets‘{bj} of expansion coefficients.
Through Eqs. (2.5), (2.6), and (2.16) there is a corresponding decomposition of

the covariance matrices ¢,

14




¢ = E bj cEJ, (3.6)
3
and we require the matrices ¢, to be orthogonal in the sense that
2 = 2
T4 Tr (gk (Eg = uk (Skls (3.7)

where the W) are certain positive constants. From Eqs. (2.5), (2.6), and (2.16)

it is not hard to show that

Trcp(p=

)
A2 (47R2)"2 ff B ) | -upl? By (ey) d%u,d%, (3.8)
0+Y0

g(‘}) ;A—l [ f IA(f) exp (iku « r/R) d2y 3.9)

is the Fourier transform of the indicator function of the aperture,

where22

1a)

€ A,

¢A.

In order for Eq. (3.7) to hold, the functions ﬂaj(g) must be eigenfunctions of

=0’

(221

the integral equation

p2 Byw = | 1w -vl? Bw ¢y (3.10)
0

This same equation arose in analyzing the resolution of details in the object
plane.18 The constants uj in Eq. (3.7) are related to the eigenvalues pj2

through

uy = Py AT/47R2. (3.11)

15



In terms of the matrices @j we define the random variables

Fad
”_]___ -2 + - (3.12)
2y =2 N ZTgm"im 5 ¥ 7 Sy |
m
where
=Nl E Tr ¢, (3.13)
Cj gm ?J
m

is a constant making the expected value of zj vanish when no object light is
present.
Under the assumption that E/NMWT<< 1, the log-likelihood ratio Z in

Eq. (3.4) can be written approximately as

..]:. -2 + 1
2 N z :?m T gm ? ?m + CB
m

E bj zj + CB’ ‘ (3.14)

3

N
n

]

where CB and CB' are known constants depending on the rad;ance pattern B(g), but
not on the aperture field wa(g, t). This is the threshold approximation.15
Given the data Zj’ therefore, the receiver can determine, through the Z's
defined by Eq. (3.14), the posterior probability of each pattern and thence
make its decisions in the optimum fashion. The zj's constitute in this approxi-
mation a set of sufficient statistics.

When as assumed here WT >> 1, furthermore, the zj's are statistically
independent gaussian random variables. 1In the presence of a particular radiance

pattern B(u), the expected value of zj is, by Egs. (2.13), (2.15), (3.6), (3.7),

and (3.11),

E(z.|B) = N2 T2 ¢ 2 Tr .
2z B ) T8 Ty g

m

16




it

b, N"2 12 (W)~} Tr ¢,?

]

bj ujZ/NZWT = bj d. 2, (3.15)
where
dj2 = ij/N2WT, ‘ (3.16)

and their covariances are

.{zk? z,} = E(z z,[B) - E(z, |B) E(z,|B)

fl

-2 2 L2 -1 -
N E T2 g2 Tr ?k(l,+ N T g o) g, (I + N 1oy 8y 9)
m

n

N2 M1 T g g,

]

220y & = a4 2
(uk /N WT) sz d 6k2’ (3.17)

independently of B(u), when E << NMWT. The demonstration that our approximations
are valid when WT >> 1 and E/NMWT << 1 is given in Appendix A. .The zj's are
approximately gaussian as a consequence of the central limit theorem of
statistics; Eq. (3.12) defines them as the sum of a large number--roughly WT--

of independent random variables. Being gaussian and uncorrelated, they are, in

this approximation, statistically independent.

17




IV. The Mutual Information

Since the patterns B(u) correspond to specific sets of coefficients bj,
the communication system can be regarded as one that transmits, every T seconds,
a set of numbers bj and receives the set of gaussian random variables zj. It
is equivalent to a set of parallel channels with additive gaussian noise; the

signal-to-noise ratio in the j-th channel is
E(z,|B)]%/Var z, = b,2 4,2 4.1
[E( Jl )] j i 957 | (4.1)

where by Egqs. (3.11) and (3.16) djzis proportional to the eigenvalue pj2 of the
integral equation, Eq. (3.10).

When the object plane O is rectangular and its length bx and its width by
are much greater than the width of the kernel [57(9)\? of Eq. (3.10), the
éigenvalues pj2 are approximately given by the spatial Fourier transform of
151(9)'2 evaluated at the points of a rectangular lattice whose cells measure

"(Zﬁ/bx) X‘(ZW/by). Thus18

2 - 2 1(2) .
Py (AR/A) L7 Uy Yy jy Yy),
Yy T AR/bX, Yy = AR/by, (4.2)
\ . . X . . . , . . 22
where j = (Jx’ Jy) is a pair of integers replacing the previous index j, and
(2) - [ 1 2.1
I, @ = I, 1,&' - 1) d%x (4.3)

is the self-convolution of the indicator function of the aperture. The

signal—~to-noise ratio in the channel j is

2
b AT] (2)
b,2d,2 = (N2WT)~! |—=—— QOR/A2 177G v, 3 v). (4.4)
J J 4 R2 A Xy

18



For a rectangular aperture aX X a

Iiz)(x, y)

il

(ax - lx[) (ay - IYI): lx[ < ars IYI < ay5

Igz)(x, y) =0, lkl 2 a or [y] > ay. (4.5)

The channels for which ljxl Y > 3 or ij! Yy > ay have, therefore, negligible
signal-to-noise ratio. (Eq. (4.4) is not exact, but we can be sure that the

true eigenvalues, though not zero in this region, are exceedingly small.)

These channels, as discussed previously,18 correspond to details in the object
whose sizes are smaller than (dx‘ ’.Gy) = (AR./ax,_AR /ay), that is, smaller
than a conventional resolution interval in the object plane 0. Information in
such fine details is lost in the noise.

The mutual information, per T-second interval, between the object plane

and the aperture plane is in this approximation given by23
I(B; 9.) = (b, 1) p{z,}|{b,})
(B; ‘Pa q( i ) p( i I j

X &n [p({zj}l{bj})/p({zj})] IT]:(dzj dbj), (4.6)

where J

pliz,1) = [atib, ) pCiz)|,) I—.ldbj 4.7)
3

and p({zj}l{bj}) is the joint conditional p. d. £. of the zj's,given the coeffi-
cients bj specifying the pattern B(g); p({zj}l{bj}) has the gaussian form with
conditional means and covariances given by Egqs. (3.15) and (3.17). Here q({bj})
is the joint p. d. f£. of the coefficients bj for the ensemble of patterns B(u)
in terms of which messages are transmitted. By using the gaussian form of

p({zj}l{bj}) we can write the information as

19



. = -1 2y - .
1(B; \,ba) 22% (2me dj ) P({zj}) 2n p({zj}) I_I dzj,
] I .8

a finite number 0 of coefficients bj are included here, and finally the limit
n -+ o is taken.

We can proceed no farther without knowing the joint p. d. f. q({bj}),
which is needed in Eq. (4.7) for calculating p({zj}). In general, this joint
p. d. £. will be difficult to determine, involving, for instance, extensive
measurements of a large number of typical scenes as represented by radiance
distributions B(u) on the object plane. The constraint that B(u) must be non-
negative will restrict the class of possible joint p. d. f.'s of the coefficients
bj in the expansion of Eq. (3.5).

The simplest assumption at this point is that the radiance B(u) is a
realization ofva homogeneous spatial gaussian random process with a covariance
function GB(gl - 92) whose width is of the order of the size of typical
details in the séene. The mean of the gaussian distribution is taken large

enough so that B(u) becomes negative only with negligible probability. The

average contrast of the resulting scenes will be of the order of

1
[0, (0)172/E(B)

and necessarily small.

When this gaussian assumption is made, the calculation of mutual information
. 24
is standard and leads to the result

I1(B; ¢a) = %-Tr (I + g D,), (4.9)

where D, is a matrix whose diagonal elements are dk2 and where the matrix ¢ has

elements

O =/Bk(\gl) opluy = up) JPy () d%u,d%u, (4.10)

20




As shown in Appendix B, the mutual information can be written as
I(B; y.) =
(AO/ZAZRZ) 2nll + a(AR/A)? zB(g) 122)(5)] a%r, (4.11)

A

where AO of the area of the object,

a = (N2WT)~! (AT/4mR%)2, (4.12)
and

ZB(g) = oB(g) exp(- iku -« E/R) d2u (4.13)
0

is the Fourier transform of the covariance function OB(B) of the object radiance.
This result has a form that has frequently appeared in the literature; only the
constants involved are somewhat different. In particular, the bandwidth W of

the object light and the time T of observation appear explicitly.

It has been assumed in going from Eq. (4.9) to Eq. (4.11) that the object
plane is much larger than the conventional resolution element AR/D, where D is
the diameter of the aperture., The mutual information is then proportional, as
might be expected, to the area of the object plane. If A is the diameter of
typical details in the scene, that is, if A is the width of the covariance
function oB(Q), the width of its transform ZB(E) is of the order of AR/A3} and
when AR/A >> D, or A << AR/D, the value of the integral in Eq. (4.11) depends
chiefly on the diameter of the aperture. That is, details of size A much less
than AR/D do not contribute to the mutual information, and as we have seen,l8
their amplitudes cannot be estimated by the receiver.

For a gaussian covariance

GB(g) = sB2 exp (~ g2/2A2) : (4.14)

21




and a circular aperture of radius a, for which

]

122)(5) (2A/n) (6 - sin 6 cos 6),

"

6 = cos™1l (|x|/2a), (4.15)

the mutual information is given by
1
I(B; wa) =M g sin(mx) Rn{l + n exp[- 4w2y2(l + cos 1x)]
0

x (x - 171 sin mx)}dx,

y = A/S, § = AR/a,

n = (2y%/n?) D2,

D(S2 = EGZ/NZWT,

E6 = (7w Sy 52) AT/4NR2,

M=AA/GRZ. (4.16)

16
Here M is the number of spatial degrees of freedom in the aperture field.

In Fig. 2 we have plotted I(B; wa)/M, the mutual information per spatial

degree of freedom per T-second interval, versus D62 for various values of

y = A/§. Here D62 is the signal-to-noise ratio associated with a received

energy E&’ which is the total energy that would be received from a circle of

radius § = AR/a on the object plane were the radiance uniformly equal to Sps

the standard deviation'of the radiance patterns B(g). At each value of D62 there

is a value of the ratio A/S that yields maximum mutual information; this optimum
ratio decreases as the quantity Déz increases. The greater the variance g of

the radiance B(u), the more the fine details contribute to the information

transferred.
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Appendix A. The Sufficient Statistics

When in the log-likelihood ratio Z of Eq. (3.4) the terms (I + Nl oT 8, w)’l

and ln(} + Nl T 8, ¢) are expanded in power series, we obtain

12 + _ N1
z=5N E v, T, oI -N Tg oot ) ¥y

~

m

- -1 - N—2 w2 2 .2
E Tr[N* T 8y P N™< T 8.~ ¢ + ...]

~

+ N72 E Tr T? gm2 % - ... (AL)

m

where zj is defined in Eq. (3.12) and b, in Eq. (3.5). The terms omitted contain

3

higher powers of ¢ than the second. We wish to show that the terms in @2 can be

neglected when E << NMWT, where E is the average energy received from the object
during the observation interval (0, T). Calling those terms Z', we find for

their expected value, from Egs. (2.9), (2.15),

1 = -3 3 3 3=
E(z'|B) = N _S_ T3 g 3 Tr ¢’ =

m
' T pT T
-3 - _ _
N fff x(ty = t,) x(t - tg) x(ty - t;) dr) dr, dig
0J0J0
2 2 2
x f//rpsusl, r,) 9z, T,) o (x5, T, d2ra%r,d%r,.
A JA JA (A2)

When WT >> 1, the integral involving the temporal coherence function is approxi-

mately equal to
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T [X(w)]® dw/2m,

where X(w) is the spectral density defined in Eq. (1.3). By using Egs. (2.5),

(2.6), and (3.9) we can write the triple spatial integral as

Tr (83 (4TrR2)"3 f[/“h - E2) B(.I:z - 1:3) 6(153 - El) d251d2§2d2§3
A YA YA
(4mR%)"3 f[//ffB(gl) B(u,) B(u,)
0 Y0 YO YA YA YA

x exp{-ik[(x; - 1,) * uy + (r; - 13) * up + (3 - ;) * y3l/R}

2u d2u a2y d2r d?~r d2

—(lmRz)3A3fffB(u)B(u)B(u)

X g(':ll - ‘.:‘2) 9(92 - ‘33) 5(1;13 - ‘;‘1) dzgldzgzdzgg‘ (A3)

The principal contribution to this integral comes from the mean radiance ﬁ,
which is constant over an area much broader than the width of the kernel d(g)c
The functions g(gz - 133) and g(g3 - 131) can therefore be rep]o.aced by

(AR)2 A™! 6(132 - 1;13) and _(AR)2 A-l 6(133 - gl) without much error, and Eq. (A3)
is approximately |

3

Ir ¢

~

(47R2)3 (R A [B(w)]3 d%u
0

]

(47R2)~3 (AR)Y* A A B3, (A4)

For the term of first order in ¢, similarly

E(z|B) = N2 E T2 g 2 Tr o = NZ(T/W) Tr (A5)

~ ~

m
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from Eq. (2.13), where by the same method as was used to obtain Eq. (A4)

2

it

(47R?)72 (AR)Z A [B(w]1? d%u
0]

Tr ¢

g (41R%)-2 (AR)2 A A B2, (A6)

The ratio of the expected values of Z' and Z is, therefore, by Egs. (A2), (A4),
(A5), and (A6),
E(z'|B)/E(Z|B) =
N~1(AR)2 B(4nR2)71 W [X(0)]13 dw/27. (A7)
For é unimodal spectral density X(w) such as a rectangular or a Lorentz
spectrum, the integral over w in Eq. (A7) will be of the order of W™2, and
we find
E(2'|B)/E(Z|B) = E/NMWT = (B/NW) (A%/4m), (48)
where |
E =3B A A T/4nR? (A9)
is the average energy received from the object plane and M is the number of
spatial degrees of freedom in the aperture field, given by Eq. (4.16).16
Thus the terms with an extra factor N~! T 8y @ in the log~likeiihood ratio,
Eq. (Al), contribute on the average a fraction (E/NMWT) of the main terms,
and when E << NMWT we can neglect them. It can be shown that the error in
the variance of Z so made is also of relative order E/NMWT. The approximation
made in Eq. (3.17) also requires neglecting terms of the form N-! T 8y P
relative to those proportional to the identity matrix I and is valid whenever

E/NMWT << 1.
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Appendix B. The Mutual Information

When the coefficients bj in Eq. (3.14) have gaussian distributions with

means bj and covariances

{b,, bz} = Oy (B1)
the statistics zj are also gaussian with means
z, = b, d,2,
J 3 1]
according to Eq. (3.15), and covariances
: ) 2 42 ’
{z, 2} =428 +472d?{b, b}
= 2 2 2
dk sz + Ok dk dz . (B2)
The entropy of the distribution of the zj's is then
H(Z) = = E gn(2me)+ 440 det|d, 2 & + o d2d 2] (B3)
2 2 k "k ke ko T

k

This is the second term in Eq. (4.8), which when combined with the first term

yields for the mutual information

I1(B; wa) = %-zn det [le + sz dlzl
= % Tr n(I + g D,) (B4)
as in Eq. (4.9), where
L e (85)
Define the matrix
B(z) = ¢ D,(I +z g D)7} (B6)
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it is the solution of the matrix equation
H(z) + z ¢ D, H(z) = ¢ D,. (B7)

In terms of it the mutual information is

1
18 9,) =3 [ Tr H(z) da. (38)

By means of the function

H(y, v; 2) =Z B, = B w (89)
k, 2 '

b]

and the orthonormality of the functions azj(g) we can write Eq. (B7) as

H(‘,}’ Vs z)

+ az ffoB(g - w) lg(‘j"‘{()lz H(x, v; z) d2‘5 d2§
0+J0

= of o -w [Jw- w2 ay, (10)
0

where as in Eq. (4.12),
o = A2 T2/N2WT(47R?%)2. , (B11)

Here we have used the expansion
|g<g—y>12=§ p,2 B, B,w, (B12)
3

which follows from the integral equation, Eq. (3.10), and the orthonormality of
the functions &3j(9) over the object plane O.

If we now assume that the object plane O is much greater than the region
over which the kernel Igf(g)lz is significant--this region is of the order of

6x X 6y-—, Eq. (B10) can be approximately solved by Fourier transforms, and
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H(u, v; 2z) = H'(u - v; z) is a function only of u - v. We introduce its

Fourier transform

h(r; z) = | H'(u; z) exp(- 1 ku * r/R) dzg, (B13)

which with Eqs. (3.9) and (4.13) permits the Fourier transform of Eq. (B10) to

be written

h(r; z) [1 + az(AR/A)? ZB(g) Iéz) ()]

= «OR/D? () 1), (814)

where Iéz)(g) is defined in Eq. (4.3), ZB(g) in Eq. (4.13).

With H(u, v; z) a function only of u - v, the trace in Eq. (B8) is

Tr H(z) = H(u, u; z) d%uw = A H'(Q; 2) =
0

A OR)7™2 [ h(z; 2) d’r =

@a?) [ 2.0 1P @ 1+ az0r/m? 20 1P @17 a2 (315)

by Eq. (Bl4) and the inverse transform to Eq. (B13). This can now be

substituted into Eq. (B8) and integrated over z to yield Eq. (4.11).
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Footnote

* This research was carried out under Grant NGL 05-009-079 from the

National Aeronautics and Space Administration.
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Figure Captions

Fig. 1. Geometrical configuration of object plane O and aperture plane A.
Light from the object and the background falls on plane A from the left.
I is an optical instrument processing the field wa(g, t) on plane A and

functioning as a receiver.

Fig. 2. Mutual information I(B; wa)/M per spatial degree of freedom versus
signal-to-noise ratio DGZ. Curves are labeled by the ratio A/§, A measuring

the sizes of object details, § the resolution interval on the object plane.
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